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Abstract. Drones are becoming a necessary and invaluable tool in many
industries, as well as in emergency response situations. They can as-
sist emergency-services in hazardous situations to get better situational
awareness. This may lead to an improved rescue-coordination, increased
personal safety for agents in the field and less personal, physical and
financial damages as a result of a faster and better intervention. Photo-
realistic 3D models generated from the drone video data, for example,
can provide situational awareness as it is easier to understand the scene
by visualizing it in 3D. The 3D model can be viewed from different
perspectives and provides an instant overview of the situation. In con-
trast to SLAM which is fast but sparse, and SfM-MVS which is dense
but slow, we present a pipeline that produces a dense photo-realistic 3D
model of the event site in near real time by fusing oblique images with
pre-recorded, publicly available LiDAR datasets.
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1 Introduction

As a first step towards supporting emergency response operations with
improved situational awareness, this paper investigates a method for
rapid 3D modeling of the emergency scene using drone images. The
obtained 3D model can serve as the basis for a decision support sys-
tem through which additional semantic information about the scene can
be dynamically added and visualized. These include, for example, the
location of other first responders and victims, possible hazards or a tem-
perature texture overlay acquired with a thermal camera.
Two types of techniques have been widely used for the 3D reconstruc-
tion of outdoor environments, namely Structure from Motion (SfM) [4]
and Simultaneous Localization and Mapping (SLAM) [3]. The former
is traditionally performed in an off-line fashion on an unordered set of
images potentially taken in different conditions. On the other hand, vi-
sual SLAM using only a camera, is supposed to work in real-time on an
ordered sequence of images acquired from a fixed camera set-up. Both
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techniques result in a sparse point cloud corresponding to the locations
of the estimated feature points. However, the low spatial resolution of
this sparse representation limits the desired level of detail required for
interpreting the 3D model.
In order to obtain a more visually appealing 3D reconstruction, the sparse
point cloud is often first densified using a Multi-view Stereo (MVS) ap-
proach such as PMVS [6] or SURE [10]. Next, a surface reconstruction
algorithm computes a triangle mesh that can be textured. These last two
steps are computationally expensive and can take up to several hours
or days even on a modern desktop, depending on the number of im-
ages and their resolution. However, since emergency response is a very
time-critical application of imaging and 3D reconstruction, these long
processing times are not feasible in a (near) real-time environment.
To conclude, the sparse point cloud reconstructed by SfM or SLAM can
be computed efficiently in (near) real-time, but it is not visually appeal-
ing. On the other hand, performing additional steps to create a textured
mesh is computationally too expensive in case of emergency response
applications. A lot of research has already been done to produce denser
SLAM [3] or faster MVS [8], but none of it is conclusive. These contra-
dicting demands can only be met by adding a priori information. There-
fore, instead of using only the images from the drone, we propose to fuse
these images with publicly available airborne LiDAR data from which a
complete but untextured 3D model can be reconstructed in advance.
The focus in our application is on building emergencies such as fire. When
an emergency call comes in, the drone is directed towards the building of
interest. During the flight, a virtual 3D model of the emergency scene can
already be constructed based on the LiDAR data. The drone flies around
the building of interest and captures images at various viewpoints. These
images are individually registered with the LiDAR data to infer the cam-
era poses. In combination with the computed camera poses, the images
can be used to texture the 3D model.

2 Related work

The most challenging task in the proposed workflow (Fig. 1) is regis-
tering the 2D images with the 3D LiDAR data. There are a number of
different issues that make this task very difficult. To start with, there is a
dimensionality gap. Furthermore, the datasets are likely captured under
different circumstances such as different seasons, different traffic condi-
tions or environmental changes due to rebuildings. The 2D-3D matching
can be described as a camera pose estimation problem. The camera pa-
rameters, location and orientation, have to be determined from a single
perspective image with respect to the 3D coordinates of a real world
scene. Different approaches have already been suggested to solve this
problem. These can be largely divided into two categories: feature-based
or image-based.
The feature-based approaches try to match geometric features such as
lines or points. In [13] , for example, line segments in both the 2D images
and the 3D LiDAR data are extracted. For a given set of camera param-
eters, the 3D line segments are projected in 2D. Using a feature called
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Fig. 1. Urban 3D modeling workflow: (Section 3.1) images from the building of interest
are captured with a drone flying along a circular path with the camera pointing towards
the building, (Section 3.2): a complete 3D model is generated in advance from pre-
recorded publicly available LiDAR data, (Section 3.3) the camera pose for a single
view is determined by maximizing the similarity between the captured image and a
synthetically generated view from that pose. The registered oblique images can be
mapped onto the 3D model using open source software such as texrecon [12]

.

3 connected segments (3CS),the line segments from the images and Li-
DAR data can be matched. Two matches are sufficient to compute the
homography, but in order to make it more robust a RANSAC approach
is used. The method works well on high altitudes where a lot of building
contours are visible. However, it is expected to perform less good in our
situation, where a single building takes up most part of the image and
therefore drastically reduces the number of building contours that can
be used for matching.

Another feature-based approach using point correspondences was pro-
posed by [11]. They try to match 2D image features and 3D scene points,
reducing it to a perspective-n-point problem. However, this method as-
sumes the point cloud is obtained from an offline Structure-from-Motion
reconstruction. As a consequence, every 3D point can be associated with
at least two image descriptors such as SIFT or SURF. By extracting
local features in the query image and matching them to the database de-
scriptors, correspondences are established between the 2D features and
3D points. From these 2D-3D correspondences the camera pose can be
estimated.

Image-based approaches on the other hand generally render the 3D
points to generate 2D synthetic views in order to bridge the dimensional-
ity gap. In [2], the camera pose estimation was reduced to a perspective-
n-point problem as well. In this case, 2D-2D point correspondences be-
tween the query image and synthetic view were established by match-
ing local features. The 3D positions of the synthetically generated can
easily be determined by using the depth buffer information from the
rendering procedure. Note that in this case terrestrial LiDAR data was
used instead of airborne LiDAR data. Using airborne LiDAR data would
probably have a negative impact on the algorithm since building facades,
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which takes up most part in oblique images, are only represented sparsely
leading to large gaps in the synthetic views.
The most similar to our approach is [9]. It tries to register the synthetic
view with respect to the query image by minimizing a mutual infor-
mation metric. The downhill simplex optimizer is utilized to infer the
camera pose parameters. However, as suggested by [14], the downhill
simplex optimizer only works best for small perturbations. Therefore, in
our approach a different optimizer is used, that is more robust to coarse
initializations.

3 Materials and methods

3.1 Drone-based image acquisition

For image acquisition a DJI Phantom 3 was used as flying platform. The
Phantom 3 is equipped with a 12 megapixel camera with a resolution
of 4000 × 3000 pixels. To ensure the building of interest is seen from
all general view angles, the drone flies on a circular path around the
building with the optical axis of the camera facing towards the center.
The images in our dataset were captured at an altitude of approximately
35 meters under an angle of 30 degrees.

3.2 Surface reconstruction from airborne LiDAR data

The underlying 3D mesh onto which the texture will be mapped, is in-
ferred from pre-recorded and publicly available airborne LiDAR data.
The process for generating a triangle mesh from the point cloud data is
shown in Fig. 2. First, the 3D point cloud is converted to a 2.5D Digital
Elevation Model (DEM). Then, it is extruded into a voxel grid based
on the elevation data. The result is again a 3D point cloud, but now
the holes in the building facades, which are typical for airborne LiDAR
data, are filled. From this 3D point cloud a proper triangle mesh can be
computed.

LiDAR DEM Voxels Mesh

Fig. 2. Surface reconstruction from airborne LiDAR data: A Digital Elevation Model
(DEM) is generated from the 3D points belonging to the building of interest. The 2.5D
grid is extruded back into 3D to fill the holes in the facades. A watertight mesh is
computed from the cleaned up point cloud.
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Since the LiDAR data is georeferenced, we can use the building footprints
from GIS data to extract the points belonging to the building of interest.
First, the 3D points are projected onto a 2D grid. The resolution of the
grid was chosen with respect to the point density of our LiDAR data.
The average point density is 8 points per square meter. Therefore, the
grid resolution was set to

√
(8) ≈ 0.35. In each grid cell the highest eleva-

tion value is retained. Next, an inverse distance weighted square moving
window of 7 cells is used to fill cells in the grid that have null values.
Then, the 2D grid cells are extruded into a 3D voxel grid depending on
the elevation. The actual mesh is generated by computing the concave
hull of all occupied voxel centers. The same process can be repeated for
other neighboring buildings in order to create a complete virtual urban
3D model as can be seen in Fig. 3.

Fig. 3. Urban 3D model: A complete virtual 3D world is generated by performing the
processing steps from the previous figure on all neighboring buildings.

3.3 Registration of LiDAR data and images

The basic elements of our image registration framework are described
in Fig. 4. A similarity metric is computed to quantify the similarity be-
tween the query image and the synthetic view. The optimizer searches
the camera pose that maximizes this similarity metric. In each optimiza-
tion step, the new camera parameters are used to rerender the synthetic
view. These three steps are repeated until a stop criterion is met.

Synthetic 2D View Generation A direct point based rendering
approach is applied for the synthetic view generation. To this end, we use
OpenGL’s GL POINTS to render the 3D point cloud data. In OpenGL a
calibrated camera can be simulated by computing the projection matrix
from the intrinsic parameters of the camera according to Equation 1,
where fx, fy are the focal lengths, cx, cy the coordinates of the principal
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Fig. 4. Interactions among the components of our image registration technique

point, w, h the width and height of the image and f, n the far and near
clipping plane. The modelview matrix represents the coordinate system
transformation for the given camera pose. By setting these two matrices,
the point cloud can be rendered as if seen from that camera viewpoint.
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 (1)

Since the resolution of the images is very large compared to the spatial
resolution of the LiDAR data, rendering the point cloud using the original
camera parameters would result in a very sparse image. Therefore, the
images were resized to 10% of the original image size. Consequently,
the camera parameters were rescaled accordingly. An example of such a
synthetic 2D view generated using OpenGL is shown in Fig. 5.

(a) Query image:
captured by the drone

(b) LiDAR based height-
encoded image

(c) LiDAR based
intensity-encoded image

Fig. 5. Synthetic 2D view generation from 3D LiDAR data

Similarity metric calculation An important design choice in im-
age registration is the selection of an appropriate similarity measure. In
this work, mutual information was chosen as similarity measure since it
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has proven to be accurate and robust for multi-modal matching [7]. It
measures the mutual dependence between the underlying intensity dis-
tributions of the images. The larger this measure the stronger the depen-
dence. The mutual information between an image A and B is calculated
as:

MI(A,B) =
∑

PA,B(a, b) log
PA,B(a, b)

PA(a) · PB(b)
(2)

The joint probability matrix can be computed as the normalized 2D
histogram, were the normalization factor equals the number of histogram
bins N . The sum of the rows and the columns, respectively, gives the
marginal probability distributions of image A and B:

PA,B(a, b) =
h(a, b)

N

PA(a) =
∑
b

PA,B(a, b)

PB(b) =
∑
a

PA,B(a, b)

(3)

Intensity based optimization In this work, an evolutionary algo-
rithm is used for image registration. Evolutionary algorithms have been
proven to be a promising solution, since they are able to perform a robust
search in complex search spaces like those arising in image registration
[14]. The structure of a classic evolutionary algorithm is as follows:

Algorithm 1 Evolutionary algorithm

INITIALIZE population with random candidate solutions
EVALUATE each candidate solution
while Termination condition not reached do

SELECT individuals for the next generation
RECOMBINE pairs of parents
MUTATE the resulting offspring
EVALUATE each candidate solution

end while

The construction of the actual evolutionary algorithm can be divided into
three parts: (1) the definition of an appropriate structure to represent
the solution; (2) determination of the fitness function; and (3) the design
of the genetic operators. In our work a candidate solution encodes the
6-DOF camera pose consisting of the 3-DOF orientation and 3-DOF
position. As described earlier, mutual information is used to evaluate
the fitness of a candidate. The genetic operators are the core of the
evolutionary algorithm. They define how to generate new solutions from
the existing ones. First, we reduce the number of individuals by keeping
only 40% of the solutions based on their fitness value. This is in fact
called a ’rank selection’. Next, two parent solutions are selected based
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on the closest Euclidean distance of their variables. An offspring of these
parents is calculated as the average of the variables of both parents.
Finally, each offspring is mutated by adding random perturbations to
the original variables.

4 Experimental results

We show the results of our algorithm with a collection of five images taken
from a building on our campus. As no GPS/INS data was available, the
initial poses were selected manually. For this a georeferenced orthomo-
saic image and the corresponding digital elevation model was used. First,
matching feature points were selected in the query image and orthomo-
saic. Using the raster information from the orthomosaic and the digital
elevation model, the 3D coordinates of the point correspondences could
be computed. Finally, solving the Perspective-n-Points problem yielded
an initial camera pose, which also serves as the ground truth pose.
Several experiments were conducted. First, different variations of the
similarity measure were compared. To this end, the mutual information
is calculated while the camera parameter being evaluated is varied. The
other parameters are held constant at their correct values. We experi-
mented with the number of histogram bins N used for calculating the
mutual information. As suggested in [7], using Sturges Rule for calculat-
ing the number of histogram bins not only makes the image registration
more efficient but also more accurate. The same conclusion can be drawn
for our image set as can be seen in Fig. 6 where the similarity measure
is plotted for small perturbations from the estimated ground truth pose.
As the top graph of Fig. 6 shows, using 256 bins results in a shift of the
maximum, which is the optimal point, for certain degrees of freedom.
As the LiDAR data also contains intensity values, we also explored the
mutual information between the query image and synthetic intensity im-
age. Fig. 6 shows that this metric is too noisy for accurate registration.
To conclude, the metric using only depth information and 18 histogram
bins performed best.
Next, the robustness of our algorithm was tested by artificially perturb-
ing the camera positions. The translation parameters were randomly per-
turbed by maximally ±5m and the rotation parameters were perturbed
by maximally ±3◦. For each of the images 100 coarse initializations were
simulated this way. The mean deviation of the optimized camera pa-
rameters from the estimated ground truth pose is shown in Fig. 7. It
was apparent by visual inspection that the order of magnitude of the
deviations is close enough for texture mapping.
Finally, our approach was visually compared with current state-of-the-
art open source Structure from Motion approaches, namely Multi-View
Environment (MVE) [5] and OpenDroneMap (ODM) [1]. For the texture
mapping of the oblique images onto our virtual 3D model, the same
library [12] was used as in MVE and ODM. Both approaches produced a
3D model in about half an hour. With our approach, it takes on average
4s to register a single oblique image to the LiDAR data. In contrast to the
Structure from motion approaches, we don’t require any overlap between
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(b) Depth, N=18
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rz
ry
rx
tx
ty
tz

Fig. 6. Plots of the mutual information as each of the camera parameters (rx: angle
of rotation around the x-axis, tx: translation in the direction of the x-axis, etc.) are
perturbed from the estimated ground truth pose. (a) Mutual information between the
query image and height-encoded LiDAR image using 256 histogram bins,(b) Mutual
information between the query image and height-encoded LiDAR image using 18 his-
togram bins, (c) Mutual information between the query image and intensity-encoded
LiDAR image using 18 histogram bins
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Fig. 7. Plots of the mean deviation of the camera parameters ((rx: angle of rotation
around the x-axis, tx: translation in the direction of the x-axis, etc.) found by the
optimization algorithm from the estimated ground truth pose for each image in our
image set.

the images, as each image is registered individually. As a result we only
require 5 images to texture the complete 3D model, which reduces the
processing time significantly. Including the texture mapping, the total
reconstruction will take on average 29s. If we compare the models visually
we can see another advantage (see Fig. 8) of our approach over the others.
3D models generated with SfM-MVS typically suffer from holes. As our
model is pre-generated from LiDAR data, some parts of the mesh may
not be textured, but at least all underlying structures are visible and
accurate.

(a) Ours (b) ODM (c) MVE

Fig. 8. Comparison of different 3D modeling approaches
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5 Conclusions and future work

We have presented our custom pipeline for the registration of 3D LiDAR
data and 2D oblique images. The registration of multi-modal 2D/3D
datasets is inherently difficult due to fundamental different nature of the
data. To overcome this problem, the dimensionality gap was first bridged
by rendering the 3D point cloud into 2D for the camera poses computed
in each optimization step. The similarity between these multi-modal im-
ages was measured using mutual information. Our experimental results
show that this choice is indeed suitable for multi-modal registration. We
further demonstrated the robustness of our approach by randomly per-
turbing the camera parameters from the ground truth.

Future research plans include reconsidering using the intensity values
from the LiDAR data for matching. The results revealed that on our im-
age set this metric did not demonstrate adequate quasi-convexity. This
is probably due to the noisy nature of the rendered synthetic 2D view.
One possibility is to apply a preprocessing filter on the rendered im-
age, that removes the noise such as anisotropic diffusion filter. Another
possibility is to use a variant of the mutual information metric such as
Quadratic Mutual Information. We will also explore the applicability of
our approach for registering thermal images with the LiDAR data as this
is certainly relevant for improving situational awareness for firefighters.
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